
python-hl7 Documentation
Release 0.4.1

John Paulett

Sep 22, 2020

CONTENTS

1 Result Tree 3

2 Usage 5

3 MLLP network client - mllp_send 9

4 Python 2 vs Python 3 and Unicode vs Byte strings 11

5 Contents 13

6 Install 33

7 Links 35

Index 37

i

ii

python-hl7 Documentation, Release 0.4.1

python-hl7 is a simple library for parsing messages of Health Level 7 (HL7) version 2.x into Python objects.
python-hl7 includes a simple client that can send HL7 messages to a Minimal Lower Level Protocol (MLLP) server
(mllp_send).

HL7 is a communication protocol and message format for health care data. It is the de-facto standard for transmitting
data between clinical information systems and between clinical devices. The version 2.x series, which is often is a pipe
delimited format is currently the most widely accepted version of HL7 (there is an alternative XML-based format).

python-hl7 currently only parses HL7 version 2.x messages into an easy to access data structure. The library could
eventually also contain the ability to create HL7 v2.x messages.

python-hl7 parses HL7 into a series of wrapped hl7.Container objects. The there are specific subclasses of
hl7.Container depending on the part of the HL7 message. The hl7.Container message itself is a subclass
of a Python list, thus we can easily access the HL7 message as an n-dimensional list. Specifically, the subclasses of
hl7.Container, in order, are hl7.Message, hl7.Segment, hl7.Field, hl7.Repetition. and hl7.
Component.

python-hl7 includes experimental asyncio-based HL7 MLLP support in MLLP using asyncio, which aims to replace
txHL7.

CONTENTS 1

https://txhl7.readthedocs.io/
https://github.com/johnpaulett/python-hl7/actions

python-hl7 Documentation, Release 0.4.1

2 CONTENTS

CHAPTER

ONE

RESULT TREE

HL7 Messages have a limited number of levels. The top level is a Message. A Message is comprised of a number of
Fields (hl7.Field). Fields can repeat (hl7.Repetition). The content of a field is either a primitive data type
(such as a string) or a composite data type comprised of one or more Components (hl7.Component). Components
are in turn comprised of Sub-Components (primitive data types).

The result of parsing is accessed as a tree using python list conventions:

Message[segment][field][repetition][component][sub-component]

The result can also be accessed using HL7 1-based indexing conventions by treating each element as a callable:

Message(segment)(field)(repetition)(component)(sub-component)

3

python-hl7 Documentation, Release 0.4.1

4 Chapter 1. Result Tree

CHAPTER

TWO

USAGE

As an example, let’s create a HL7 message:

>>> message = 'MSH|^~\&|GHH LAB|ELAB-3|GHH OE|BLDG4|200202150930||ORU^R01|CNTRL-
→˓3456|P|2.4\r'
>>> message += 'PID|||555-44-4444||EVERYWOMAN^EVE^E^^^^L|JONES|196203520|F|||153
→˓FERNWOOD DR.^^STATESVILLE^OH^35292||(206)3345232|(206)752-121||||AC555444444||67-
→˓A4335^OH^20030520\r'
>>> message += 'OBR|1|845439^GHH OE|1045813^GHH LAB|1554-5^
→˓GLUCOSE|||200202150730||||||||555-55-5555^PRIMARY^PATRICIA P^^^^MD^^LEVEL SEVEN
→˓HEALTHCARE, INC.|||||||||F||||||444-44-4444^HIPPOCRATES^HOWARD H^^^^MD\r'
>>> message += 'OBX|1|SN|1554-5^GLUCOSE^POST 12H CFST:MCNC:PT:SER/PLAS:QN||^182|mg/
→˓dl|70_105|H|||F\r'

We call the hl7.parse() command with string message:

>>> import hl7
>>> h = hl7.parse(message)

We get a hl7.Message object, wrapping a series of hl7.Segment objects:

>>> type(h)
<class 'hl7.containers.Message'>

We can always get the HL7 message back:

>>> str(h) == message
True

Interestingly, hl7.Message can be accessed as a list:

>>> isinstance(h, list)
True

There were 4 segments (MSH, PID, OBR, OBX):

>>> len(h)
4

We can extract the hl7.Segment from the hl7.Message instance:

>>> h[3]
[['OBX'], ['1'], ['SN'], [[['1554-5'], ['GLUCOSE'], ['POST 12H CFST:MCNC:PT:SER/
→˓PLAS:QN']]], [''], [[[''], ['182']]], ['mg/dl'], ['70_105'], ['H'], [''], [''], ['F
→˓']]

(continues on next page)

5

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

>>> h[3] is h(4)
True

Note that since the first element of the segment is the segment name, segments are effectively 1-based in python as
well (because the HL7 spec does not count the segment name as part of the segment itself):

>>> h[3][0]
['OBX']
>>> h[3][1]
['1']
>>> h[3][2]
['SN']
>>> h(4)(2)
['SN']

We can easily reconstitute this segment as HL7, using the appropriate separators:

>>> str(h[3])
'OBX|1|SN|1554-5^GLUCOSE^POST 12H CFST:MCNC:PT:SER/PLAS:QN||^182|mg/dl|70_105|H|||F'

We can extract individual elements of the message:

>>> h[3][3][0][1][0]
'GLUCOSE'
>>> h[3][3][0][1][0] is h(4)(3)(1)(2)(1)
True
>>> h[3][5][0][1][0]
'182'
>>> h[3][5][0][1][0] is h(4)(5)(1)(2)(1)
True

We can look up segments by the segment identifier, either via hl7.Message.segments() or via the traditional
dictionary syntax:

>>> h.segments('OBX')[0][3][0][1][0]
'GLUCOSE'
>>> h['OBX'][0][3][0][1][0]
'GLUCOSE'
>>> h['OBX'][0][3][0][1][0] is h['OBX'](1)(3)(1)(2)(1)
True

Since many many types of segments only have a single instance in a message (e.g. PID or MSH), hl7.Message.
segment() provides a convienance wrapper around hl7.Message.segments() that returns the first matching
hl7.Segment:

>>> h.segment('PID')[3][0]
'555-44-4444'
>>> h.segment('PID')[3][0] is h.segment('PID')(3)(1)
True

The result of parsing contains up to 5 levels. The last level is a non-container type.

>>> type(h)
<class 'hl7.containers.Message'>

>>> type(h[3])

(continues on next page)

6 Chapter 2. Usage

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

<class 'hl7.containers.Segment'>

>>> type(h[3][3])
<class 'hl7.containers.Field'>

>>> type(h[3][3][0])
<class 'hl7.containers.Repetition'>

>>> type(h[3][3][0][1])
<class 'hl7.containers.Component'>

>>> type(h[3][3][0][1][0])
<class 'str'>

The parser only generates the levels which are present in the message.

>>> type(h[3][1])
<class 'hl7.containers.Field'>

>>> type(h[3][1][0])
<class 'str'>

7

python-hl7 Documentation, Release 0.4.1

8 Chapter 2. Usage

CHAPTER

THREE

MLLP NETWORK CLIENT - MLLP_SEND

python-hl7 features a simple network client, mllp_send, which reads HL7 messages from a file or sys.stdin
and posts them to an MLLP server. mllp_send is a command-line wrapper around hl7.client.MLLPClient.
mllp_send is a useful tool for testing HL7 interfaces or resending logged messages:

mllp_send --file sample.hl7 --port 6661 mirth.example.com

See mllp_send - MLLP network client for examples and usage instructions.

For receiving HL7 messages using the Minimal Lower Level Protocol (MLLP), take a look at the related twisted-hl7
package. If do not want to use twisted and are looking to re-write some of twisted-hl7’s functionality, please reach out
to us. It is likely that some of the MLLP parsing and formatting can be moved into python-hl7, which twisted-hl7 and
other libraries can depend upon.

9

http://twisted-hl7.readthedocs.org

python-hl7 Documentation, Release 0.4.1

10 Chapter 3. MLLP network client - mllp_send

CHAPTER

FOUR

PYTHON 2 VS PYTHON 3 AND UNICODE VS BYTE STRINGS

python-hl7 supports Python 3.5+ and primarily deals with the unicode str type.

Passing bytes to hl7.parse(), requires setting the encoding parameter, if using anything other than UTF-8.
hl7.parse() will always return a datastructure containing unicode str objects.

hl7.Message can be forced back into a single string using and str(message).

mllp_send - MLLP network client assumes the stream is already in the correct encoding.

hl7.client.MLLPClient, if given a str or hl7.Message instance, will use its encodingmethod to encode
the unicode data into bytes.

11

python-hl7 Documentation, Release 0.4.1

12 Chapter 4. Python 2 vs Python 3 and Unicode vs Byte strings

CHAPTER

FIVE

CONTENTS

5.1 python-hl7 API

hl7.NULL = '""'
This is the HL7 Null value. It means that a field is present and blank.

hl7.parse(line, encoding='utf-8', factory=<class 'hl7.containers.Factory'>)
Returns a instance of the hl7.Message that allows indexed access to the data elements.

A custom hl7.Factory subclass can be passed in to be used when constructing the message and it’s compo-
nents.

Note: HL7 usually contains only ASCII, but can use other character sets (HL7 Standards Document, Section
1.7.1), however as of v2.8, UTF-8 is the preferred character set1.

python-hl7 works on Python unicode strings. hl7.parse() will accept unicode string or will attempt to con-
vert bytestrings into unicode strings using the optional encoding parameter. encoding defaults to UTF-8,
so no work is needed for bytestrings in UTF-8, but for other character sets like ‘cp1252’ or ‘latin1’, encoding
must be set appropriately.

>>> h = hl7.parse(message)

To decode a non-UTF-8 byte string:

hl7.parse(message, encoding='latin1')

Return type hl7.Message

hl7.ishl7(line)
Determines whether a line looks like an HL7 message. This method only does a cursory check and does not
fully validate the message.

Return type bool

hl7.isfile(line)
Files are wrapped in FHS / FTS FHS = file header segment FTS = file trailer segment

hl7.split_file(hl7file)
Given a file, split out the messages. Does not do any validation on the message. Throws away batch and file
segments.

1 http://wiki.hl7.org/index.php?title=Character_Set_used_in_v2_messages

13

https://docs.python.org/3/library/functions.html#bool
http://wiki.hl7.org/index.php?title=Character_Set_used_in_v2_messages

python-hl7 Documentation, Release 0.4.1

hl7.generate_message_control_id()
Generate a unique 20 character message id.

See http://www.hl7resources.com/Public/index.html?a55433.htm

hl7.parse_datetime(value)
Parse hl7 DTM string value datetime.datetime.

value is of the format YYYY[MM[DD[HH[MM[SS[.S[S[S[S]]]]]]]]][+/-HHMM] or a ValueError will be
raised.

Return type :py:;class:datetime.datetime

5.1.1 Data Types

class hl7.Sequence
Base class for sequences that can be indexed using 1-based index

__call__(index, value=<object object>)
Support list access using HL7 compatible 1-based indices. Can be used to get and set values.

>>> s = hl7.Sequence([1, 2, 3, 4])
>>> s(1) == s[0]
True
>>> s(2, "new")
>>> s
[1, 'new', 3, 4]

class hl7.Container(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Abstract root class for the parts of the HL7 message.

__str__()
Join a the child containers into a single string, separated by the self.separator. This method acts recursively,
calling the children’s __unicode__ method. Thus unicode() is the approriate method for turning the
python-hl7 representation of HL7 into a standard string.

>>> str(h) == message
True

class hl7.Accessor

static __new__(cls, segment, segment_num=1, field_num=None, repeat_num=None, compo-
nent_num=None, subcomponent_num=None)

Create a new instance of Accessor for segment. Index numbers start from 1.

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable)
Make a new Accessor object from a sequence or iterable

_replace(**kwds)
Return a new Accessor object replacing specified fields with new values

property component_num
Alias for field number 4

property field_num
Alias for field number 2

14 Chapter 5. Contents

http://www.hl7resources.com/Public/index.html?a55433.htm
https://docs.python.org/3/library/datetime.html#datetime.datetime

python-hl7 Documentation, Release 0.4.1

property key
Return the string accessor key that represents this instance

classmethod parse_key(key)
Create an Accessor by parsing an accessor key.

The key is defined as:

SEG[n]-Fn-Rn-Cn-Sn
F Field
R Repeat
C Component
S Sub-Component

Indexing is from 1 for compatibility with HL7 spec numbering.

Example:

PID.F1.R1.C2.S2 or PID.1.1.2.2

PID (default to first PID segment, counting from 1)
F1 (first after segment id, HL7 Spec numbering)
R1 (repeat counting from 1)
C2 (component 2 counting from 1)
S2 (component 2 counting from 1)

property repeat_num
Alias for field number 3

property segment
Alias for field number 0

property segment_num
Alias for field number 1

property subcomponent_num
Alias for field number 5

class hl7.Message(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Representation of an HL7 message. It contains a list of hl7.Segment instances.

__getitem__(key)
Index, segment-based or accessor lookup.

If key is an integer, __getitem__ acts list a list, returning the hl7.Segment held at that index:

>>> h[1]
[['PID'], ...]

If the key is a string of length 3, __getitem__ acts like a dictionary, returning all segments whose
segment_id is key (alias of hl7.Message.segments()).

>>> h['OBX']
[[['OBX'], ['1'], ...]]

If the key is a string of length greater than 3, the key is parsed into an hl7.Accessor and passed to
hl7.Message.extract_field().

If the key is an hl7.Accessor, it is passed to hl7.Message.extract_field().

5.1. python-hl7 API 15

python-hl7 Documentation, Release 0.4.1

__setitem__(key, value)
Index or accessor assignment.

If key is an integer, __setitem__ acts list a list, setting the hl7.Segment held at that index:

>>> h[1] = hl7.Segment("|", [hl7.Field("^", ['PID'], [''])])

If the key is a string of length greater than 3, the key is parsed into an hl7.Accessor and passed to
hl7.Message.assign_field().

>>> h["PID.2"] = "NEW"

If the key is an hl7.Accessor, it is passed to hl7.Message.assign_field().

assign_field(value, segment, segment_num=1, field_num=None, repeat_num=None, compo-
nent_num=None, subcomponent_num=None)

Assign a value into a message using the tree based assignment notation. The segment must exist.

Extract a field using a future proofed approach, based on rules in: http://wiki.medical-objects.com.au/
index.php/Hl7v2_parsing

create_ack(ack_code='AA', message_id=None, application=None, facility=None)
Create an hl7 ACK response hl7.Message, per spec 2.9.2, for this message.

See http://www.hl7standards.com/blog/2007/02/01/ack-message-original-mode-acknowledgement/

ack_code options are one of AA (Application Accept), AR (Application Reject), AE (Application Error),
CA (Commit Accept - Enhanced Mode), CR (Commit Reject - Enhanced Mode), or CE (Commit Error -
Enhanced Mode) (see HL7 Table 0008 - Acknowledgment Code) message_id control message ID for
ACK, defaults to unique generated ID application name of sending application, defaults to receiving
application of message facility name of sending facility, defaults to receiving facility of message

create_component(seq)
Create a new hl7.Component compatible with this message

create_field(seq)
Create a new hl7.Field compatible with this message

create_message(seq)
Create a new hl7.Message compatible with this message

create_repetition(seq)
Create a new hl7.Repetition compatible with this message

create_segment(seq)
Create a new hl7.Segment compatible with this message

escape(field, app_map=None)
See: http://www.hl7standards.com/blog/2006/11/02/hl7-escape-sequences/

To process this correctly, the full set of separators (MSH.1/MSH.2) needs to be known.

Pass through the message. Replace recognised characters with their escaped version. Return an ascii
encoded string.

Functionality:

• Replace separator characters (2.10.4)

• replace application defined characters (2.10.7)

• Replace non-ascii values with hex versions using HL7 conventions.

Incomplete:

16 Chapter 5. Contents

http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing
http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing
http://www.hl7standards.com/blog/2007/02/01/ack-message-original-mode-acknowledgement/
http://www.hl7standards.com/blog/2006/11/02/hl7-escape-sequences/

python-hl7 Documentation, Release 0.4.1

• replace highlight characters (2.10.3)

• How to handle the rich text substitutions.

• Merge contiguous hex values

extract_field(segment, segment_num=1, field_num=1, repeat_num=1, component_num=1, sub-
component_num=1)

Extract a field using a future proofed approach, based on rules in: http://wiki.medical-objects.com.au/
index.php/Hl7v2_parsing

‘PID|Field1|Component1^Component2|Component1^Sub-Component1&Sub-
Component2^Component3|Repeat1~Repeat2’,

PID.F3.R1.C2.S2 = ‘Sub-Component2’
PID.F4.R2.C1 = ‘Repeat1’

Compatibility Rules:

If the parse tree is deeper than the specified path continue following the first child branch until a
leaf of the tree is encountered and return that value (which could be blank).

Example:

PID.F3.R1.C2 = ‘Sub-Component1’ (assume .SC1)

If the parse tree terminates before the full path is satisfied check each of the subsequent paths and
if every one is specified at position 1 then the leaf value reached can be returned as the result.

PID.F4.R1.C1.SC1 = ‘Repeat1’ (ignore .SC1)

segment(segment_id)
Gets the first segment with the segment_id from the parsed message.

>>> h.segment('PID')
[['PID'], ...]

Return type hl7.Segment

segments(segment_id)
Returns the requested segments from the parsed message that are identified by the segment_id (e.g. OBR,
MSH, ORC, OBX).

>>> h.segments('OBX')
[[['OBX'], ['1'], ...]]

Return type list of hl7.Segment

unescape(field, app_map=None)
See: http://www.hl7standards.com/blog/2006/11/02/hl7-escape-sequences/

To process this correctly, the full set of separators (MSH.1/MSH.2) needs to be known.

This will convert the identifiable sequences. If the application provides mapping, these are also used. Items
which cannot be mapped are removed

For example, the App Map count provide N, H, Zxxx values

Chapter 2: Section 2.10

At the moment, this functionality can:

• replace the parsing characters (2.10.4)

5.1. python-hl7 API 17

http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing
http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing
http://www.hl7standards.com/blog/2006/11/02/hl7-escape-sequences/

python-hl7 Documentation, Release 0.4.1

• replace highlight characters (2.10.3)

• replace hex characters. (2.10.5)

• replace rich text characters (2.10.6)

• replace application defined characters (2.10.7)

It cannot:

• switch code pages / ISO IR character sets

class hl7.Segment(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Second level of an HL7 message, which represents an HL7 Segment. Traditionally this is a line of a message
that ends with a carriage return and is separated by pipes. It contains a list of hl7.Field instances.

class hl7.Field(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Third level of an HL7 message, that traditionally is surrounded by pipes and separated by carets. It contains a
list of strings or hl7.Repetition instances.

class hl7.Repetition(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Fourth level of an HL7 message. A field can repeat. It contains a list of strings or hl7.Component instances.

class hl7.Component(separator, sequence=[], esc='\', separators='r|~^&', factory=None)
Fifth level of an HL7 message. A component is a composite datatypes. It contains a list of string sub-
components.

class hl7.Factory
Factory used to create each type of Container.

A subclass can be used to create specialized subclasses of each container.

create_component
Create an instance of hl7.Component

alias of Component

create_field
Create an instance of hl7.Field

alias of Field

create_message
Create an instance of hl7.Message

alias of Message

create_repetition
Create an instance of hl7.Repetition

alias of Repetition

create_segment
Create an instance of hl7.Segment

alias of Segment

18 Chapter 5. Contents

python-hl7 Documentation, Release 0.4.1

5.1.2 MLLP Network Client

class hl7.client.MLLPClient(host, port, encoding='utf-8')
A basic, blocking, HL7 MLLP client based upon socket.

MLLPClient implements two methods for sending data to the server.

• MLLPClient.send() for raw data that already is wrapped in the appropriate MLLP container (e.g.
<SB>message<EB><CR>).

• MLLPClient.send_message() will wrap the message in the MLLP container

Can be used by the with statement to ensure MLLPClient.close() is called:

with MLLPClient(host, port) as client:
client.send_message('MSH|...')

MLLPClient takes an optional encoding parameter, defaults to UTF-8, for encoding unicode messages2.

close()
Release the socket connection

send(data)
Low-level, direct access to the socket.send (data must be already wrapped in an MLLP container). Blocks
until the server returns.

send_message(message)
Wraps a byte string, unicode string, or hl7.Message in a MLLP container and send the message to the
server

If message is a byte string, we assume it is already encoded properly. If message is unicode or hl7.
Message, it will be encoded according to hl7.client.MLLPClient.encoding

5.1.3 MLLP Asyncio

async hl7.mllp.open_hl7_connection(host=None, port=None, *, loop=None, limit=65536, en-
coding=None, encoding_errors=None, **kwds)

A wrapper for loop.create_connection() returning a (reader, writer) pair.

The reader returned is a hl7.mllp.HL7StreamReader instance; the writer is a hl7.mllp.
HL7StreamWriter instance.

The arguments are all the usual arguments to create_connection() except protocol_factory; most common are
positional host and port, with various optional keyword arguments following.

Additional optional keyword arguments are loop (to set the event loop instance to use), limit (to set the
buffer limit passed to the hl7.mllp.HL7StreamReader), encoding (to set the encoding on the hl7.
mllp.HL7StreamReader and hl7.mllp.HL7StreamWriter) and encoding_errors (to set the encod-
ing_errors on the hl7.mllp.HL7StreamReader and hl7.mllp.HL7StreamWriter).

async hl7.mllp.start_hl7_server(client_connected_cb, host=None, port=None, *, loop=None,
limit=65536, encoding=None, encoding_errors=None,
**kwds)

Start a socket server, call back for each client connected.

The first parameter, client_connected_cb, takes two parameters: client_reader, client_writer. client_reader is a
hl7.mllp.HL7StreamReader object, while client_writer is a hl7.mllp.HL7StreamWriter object.
This parameter can either be a plain callback function or a coroutine; if it is a coroutine, it will be automatically
converted into a Task.

2 http://wiki.hl7.org/index.php?title=Character_Set_used_in_v2_messages

5.1. python-hl7 API 19

https://docs.python.org/3/library/socket.html#module-socket
http://wiki.hl7.org/index.php?title=Character_Set_used_in_v2_messages

python-hl7 Documentation, Release 0.4.1

The rest of the arguments are all the usual arguments to loop.create_server() except protocol_factory; most
common are positional host and port, with various optional keyword arguments following.

The return value is the same as loop.create_server(). Additional optional keyword arguments are loop (to set
the event loop instance to use) and limit (to set the buffer limit passed to the StreamReader).

The return value is the same as loop.create_server(), i.e. a Server object which can be used to stop the service.

class hl7.mllp.HL7StreamReader(limit=65536, loop=None, encoding=None, encod-
ing_errors=None)

async readmessage()
Reads a full HL7 message from the stream.

This will return an hl7.Message.

If limit is reached, ValueError will be raised. In that case, if block termination separator was found,
complete line including separator will be removed from internal buffer. Else, internal buffer will be cleared.
Limit is compared against part of the line without separator.

If an invalid MLLP block is encountered, hl7.mllp.InvalidBlockError will be raised.

class hl7.mllp.HL7StreamWriter(transport, protocol, reader, loop, encoding=None, encod-
ing_errors=None)

writemessage(message)
Writes an hl7.Message to the stream.

class hl7.mllp.InvalidBlockError
An MLLP Block was received that violates MLLP protocol

5.2 mllp_send - MLLP network client

python-hl7 features a simple network client, mllp_send, which reads HL7 messages from a file or sys.stdin
and posts them to an MLLP server. mllp_send is a command-line wrapper around hl7.client.MLLPClient.
mllp_send is a useful tool for testing HL7 interfaces or resending logged messages:

$ mllp_send --file sample.hl7 --port 6661 mirth.example.com
MSH|^~\&|LIS|Example|Hospital|Mirth|20111207105244||ACK^A01|A234244|P|2.3.1|
MSA|AA|234242|Message Received Successfully|

5.2.1 Usage

Usage: mllp_send [options] <server>

Options:
-h, --help show this help message and exit
--version print current version and exit
-p PORT, --port=PORT port to connect to
-f FILE, --file=FILE read from FILE instead of stdin
-q, --quiet do not print status messages to stdout
--loose allow file to be a HL7-like object (\r\n instead of

\r). Requires that messages start with "MSH|^~\&|".
Requires --file option (no stdin)

20 Chapter 5. Contents

python-hl7 Documentation, Release 0.4.1

5.2.2 Input Format

By default, mllp_send expects the FILE or stdin input to be a properly formatted HL7 message (carriage returns
separating segments) wrapped in a MLLP stream (<SB>message1<EB><CR><SB>message2<EB><CR>...).

However, it is common, especially if the file has been manually edited in certain text editors, that the ASCII control
characters will be lost and the carriage returns will be replaced with the platform’s default line endings. In this case,
mllp_send provides the --loose option, which attempts to take something that “looks like HL7” and convert it
into a proper HL7 message..

5.2.3 Additional Resources

• http://python-hl7.readthedocs.org

5.3 MLLP using asyncio

New in version 0.4.1.

Note: hl7.mllp package is currently experimental and subject to change. It aims to replace txHL7.

python-hl7 includes classes for building HL7 clients and servers using asyncio. The underlying protocol for these
clients and servers is MLLP.

The hl7.mllp package is designed the same as the asyncio.streams package. Examples in that documentation may be
of assistance in writing production senders and receivers.

5.3.1 HL7 Sender

Using the third party `aiorun` instead of the `asyncio.run()` to avoid
boilerplate.
import aiorun

import hl7
from hl7.mllp import open_hl7_connection

async def main():
message = 'MSH|^~\&|GHH LAB|ELAB-3|GHH OE|BLDG4|200202150930||ORU^R01|CNTRL-

→˓3456|P|2.4\r'
message += 'PID|||555-44-4444||EVERYWOMAN^EVE^E^^^^L|JONES|196203520|F|||153

→˓FERNWOOD DR.^^STATESVILLE^OH^35292||(206)3345232|(206)752-121||||AC555444444||67-
→˓A4335^OH^20030520\r'

message += 'OBR|1|845439^GHH OE|1045813^GHH LAB|1554-5^
→˓GLUCOSE|||200202150730||||||||555-55-5555^PRIMARY^PATRICIA P^^^^MD^^LEVEL SEVEN
→˓HEALTHCARE, INC.|||||||||F||||||444-44-4444^HIPPOCRATES^HOWARD H^^^^MD\r'

message += 'OBX|1|SN|1554-5^GLUCOSE^POST 12H CFST:MCNC:PT:SER/PLAS:QN||^182|mg/
→˓dl|70_105|H|||F\r'

Open the connection to the HL7 receiver.
Using wait_for is optional, but recommended so
a dead receiver won't block you for long

(continues on next page)

5.3. MLLP using asyncio 21

http://python-hl7.readthedocs.org
https://docs.python.org/3/library/asyncio-stream.html

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

hl7_reader, hl7_writer = await asyncio.wait_for(
open_hl7_connection("127.0.0.1", 2575),
timeout=10,

)

hl7_message = hl7.parse(message)

Write the HL7 message, and then wait for the writer
to drain to actually send the message
hl7_writer.writemessage(hl7_message)
await hl7_writer.drain()
print(f'Sent message\n {hl7_message}'.replace('\r', '\n'))

Now wait for the ACK message from the receiever
hl7_ack = await asyncio.wait_for(
hl7_reader.readmessage(),
timeout=10

)
print(f'Received ACK\n {hl7_ack}'.replace('\r', '\n'))

aiorun.run(main(), stop_on_unhandled_errors=True)

5.3.2 HL7 Receiver

Using the third party `aiorun` instead of the `asyncio.run()` to avoid
boilerplate.
import aiorun

import hl7
from hl7.mllp import start_hl7_server

async def process_hl7_messages(hl7_reader, hl7_writer):
"""This will be called every time a socket connects
with us.
"""
peername = hl7_writer.get_extra_info("peername")
print(f"Connection established {peername}")
try:

We're going to keep listening until the writer
is closed. Only writers have closed status.
while not hl7_writer.is_closing():

hl7_message = await hl7_reader.readmessage()
print(f'Received message\n {hl7_message}'.replace('\r', '\n'))
Now let's send the ACK and wait for the
writer to drain
hl7_writer.writemessage(hl7_message.create_ack())
await hl7_writer.drain()

except asyncio.IncompleteReadError:
Oops, something went wrong, if the writer is not
closed or closing, close it.
if not hl7_writer.is_closing():

hl7_writer.close()
await hl7_writer.wait_closed()

(continues on next page)

22 Chapter 5. Contents

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

print(f"Connection closed {peername}")

async def main():
try:

Start the server in a with clause to make sure we
close it
async with await start_hl7_server(

process_hl7_messages, port=2575
) as hl7_server:

And now we server forever. Or until we are
cancelled...
await hl7_server.serve_forever()

except asyncio.CancelledError:
Cancelled errors are expected
pass

except Exception:
print("Error occurred in main")

aiorun.run(main(), stop_on_unhandled_errors=True)

5.4 Message Accessor

Reproduced from: http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing

Note: Warning: Indexes in this API are from 1, not 0. This is to align with the HL7 documentation.

Example HL7 Fragment:

>>> message = 'MSH|^~\&|\r'
>>> message += 'PID|Field1|Component1^Component2|Component1^Sub-Component1&Sub-
→˓Component2^Component3|Repeat1~Repeat2\r\r'

>>> import hl7
>>> h = hl7.parse(message)

The resulting parse tree with values in quotes:

Segment = “PID”
F1

R1 = “Field1”
F2

R1
C1 = “Component1”
C2 = “Component2”

F3
R1

C1 = “Component1”
C2

S1 = “Sub-Component1”

5.4. Message Accessor 23

http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing

python-hl7 Documentation, Release 0.4.1

S2 = “Sub-Component2”
C3 = “Component3”

F4
R1 = “Repeat1”
R2 = “Repeat2”

Legend

F Field
R Repeat
C Component
S Sub-Component

A tree has leaf values and nodes. Only the leaves of the tree can have a value. All data items in the message will be in
a leaf node.

After parsing, the data items in the message are in position in the parse tree, but they remain in their escaped form.
To extract a value from the tree you start at the root of the Segment and specify the details of which field value you
want to extract. The minimum specification is the field number and repeat number. If you are after a component or
sub-component value you also have to specify these values.

If for instance if you want to read the value “Sub-Component2” from the example HL7 you need to specify: Field 3,
Repeat 1, Component 2, Sub-Component 2 (PID.F1.R1.C2.S2). Reading values from a tree structure in this manner is
the only safe way to read data from a message.

>>> h['PID.F1.R1']
'Field1'

>>> h['PID.F2.R1.C1']
'Component1'

You can also access values using hl7.Accessor, or by directly calling hl7.Message.extract_field().
The following are all equivalent:

>>> h['PID.F2.R1.C1']
'Component1'

>>> h[hl7.Accessor('PID', 1, 2, 1, 1)]
'Component1'

>>> h.extract_field('PID', 1, 2, 1, 1)
'Component1'

All values should be accessed in this manner. Even if a field is marked as being non-repeating a repeat of “1” should
be specified as later version messages could have a repeating value.

To enable backward and forward compatibility there are rules for reading values when the tree does not match the
specification (eg PID.F1.R1.C2.S2) The common example of this is expanding a HL7 “IS” Value into a Codeded
Value (“CE”). Systems reading a “IS” value would read the Identifier field of a message with a “CE” value and
systems expecting a “CE” value would see a Coded Value with only the identifier specified. A common Australian
example of this is the OBX Units field, which was an “IS” value previously and became a “CE” Value in later versions.

Old Version: “|mmol/l|” New Version: “|mmol/l^^ISO+|”

24 Chapter 5. Contents

python-hl7 Documentation, Release 0.4.1

Systems expecting a simple “IS” value would read “OBX.F6.R1” and this would yield a value in the tree for an
old message but with a message with a Coded Value that tree node would not have a value, but would have 3 child
Components with the “mmol/l” value in the first subcomponent. To resolve this issue where the tree is deeper than the
specified path the first node of every child node is traversed until a leaf node is found and that value is returned.

>>> h['PID.F3.R1.C2']
'Sub-Component1'

This is a general rule for reading values: If the parse tree is deeper than the specified path continue following the
first child branch until a leaf of the tree is encountered and return that value (which could be blank).

Systems expecting a Coded Value (“CE”), but reading a message with a simple “IS” value in it have the opposite
problem. They have a deeper specification but have reached a leaf node and cannot follow the path any further.
Reading a “CE” value requires multiple reads for each sub-component but for the “Identifier” in this example the
specification would be “OBX.F6.R1.C1”. The tree would stop at R1 so C1 would not exist. In this case the unsatisfied
path elements (C1 in this case) can be examined and if every one is position 1 then they can be ignored and the leaf of
the tree that was reached returned. If any of the unsatisfied paths are not in position 1 then this cannot be done and the
result is a blank string.

This is the second Rule for reading values: If the parse tree terminates before the full path is satisfied check each
of the subsequent paths and if every one is specified at position 1 then the leaf value reached can be returned as
the result.

>>> h['PID.F1.R1.C1.S1']
'Field1'

This is a general rule for reading values: If the parse tree is deeper than the specified path continue following the
first child branch until a leaf of the tree is encountered and return that value (which could be blank).

In the second example every value that makes up the Coded Value, other than the identifier has a component position
greater than one and when reading a message with a simple “IS” value in it, every value other than the identifier would
return a blank string.

Following these rules will result in excellent backward and forward compatibility. It is important to allow the reading
of values that do not exist in the parse tree by simply returning a blank string. The two rules detailed above, along
with the full tree specification for all values being read from a message will eliminate many of the errors seen when
handling earlier and later message versions.

>>> h['PID.F10.R1']
''

At this point the desired value has either been located, or is absent, in which case a blank string is returned.

5.4.1 Assignments

The accessors also support item assignments. However, the Message object must exist and the separators must be
validly assigned.

Create a response message.

>>> SEP = '|^~\&'
>>> CR_SEP = '\r'
>>> MSH = hl7.Segment(SEP[0], [hl7.Field(SEP[1], ['MSH'])])
>>> MSA = hl7.Segment(SEP[0], [hl7.Field(SEP[1], ['MSA'])])
>>> response = hl7.Message(CR_SEP, [MSH, MSA])
>>> response['MSH.F1.R1'] = SEP[0]
>>> response['MSH.F2.R1'] = SEP[1:]

(continues on next page)

5.4. Message Accessor 25

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

>>> str(response)
'MSH|^~\\&|\rMSA\r'

Assign values into the message. You can only assign a string into the message (i.e. a leaf of the tree).

>>> response['MSH.F9.R1.C1'] = 'ORU'
>>> response['MSH.F9.R1.C2'] = 'R01'
>>> response['MSH.F9.R1.C3'] = ''
>>> response['MSH.F12.R1'] = '2.4'
>>> response['MSA.F1.R1'] = 'AA'
>>> response['MSA.F3.R1'] = 'Application Message'

>>> str(response)
'MSH|^~\\&|||||||ORU^R01^|||2.4\rMSA|AA||Application Message\r'

You can also assign values using hl7.Accessor, or by directly calling hl7.Message.assign_field(). The
following are all equivalent:

>>> response['MSA.F1.R1'] = 'AA'
>>> response[hl7.Accessor('MSA', 1, 1, 1)] = 'AA'
>>> response.assign_field('AA', 'MSA', 1, 1, 1)

5.4.2 Escaping Content

HL7 messages are transported using the 7bit ascii character set. Only characters between ascii 32 and 127 are used.
Characters which cannot be transported using this range of values must be ‘escaped’, that is replaced by a sequence of
characters for transmission.

The stores values internally in the escaped format. When the message is composed using ‘str’, the escaped value must
be returned.

>>> message = 'MSH|^~\&|\r'
>>> message += 'PID|Field1|\F\|\r\r'
>>> h = hl7.parse(message)

>>> str(h['PID'][0][2])
'\\F\\'

>>> h.unescape(str(h['PID'][0][2]))
'|'

When the accessor is used to reference the field, the field is automatically unescaped.

>>> h['PID.F2.R1']
'|'

The escape/unescape mechanism support replacing separator characters with their escaped version and replacing non-
ascii characters with hexadecimal versions.

The escape method returns a ‘str’ object. The unescape method returns a str object.

>>> h.unescape('\\F\\')
'|'

(continues on next page)

26 Chapter 5. Contents

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

>>> h.unescape('\\R\\')
'~'

>>> h.unescape('\\S\\')
'^'

>>> h.unescape('\\T\\')
'&'

>>> h.unescape('\\X202020\\')
' '

>>> h.escape('|~^&')
'\\F\\\\R\\\\S\\\\T\\'

>>> h.escape('áéíóú')
'\\Xe1\\\\Xe9\\\\Xed\\\\Xf3\\\\Xfa\\'

Presentation Characters

HL7 defines a protocol for encoding presentation characters, These include hightlighting, and rich text functionality.
The API does not currently allow for easy access to the escape/unescape logic. You must overwrite the message class
escape and unescape methods, after parsing the message.

5.5 Contributing

The source code is available at http://github.com/johnpaulett/python-hl7

Please fork and issue pull requests. Generally any changes, bug fixes, or new features should be accompanied by
corresponding tests in our test suite.

5.5.1 Testing

The test suite is located in tests/ and can be run several ways.

It is recommended to run the full tox suite so that all supported Python versions are tested and the documentation is
built and tested. We provide a Makefile to create a virtualenv, install tox, and run tox:

$ make tests
py27: commands succeeded
py26: commands succeeded
docs: commands succeeded
congratulations :)

To run the test suite with a specific python interpreter:

python setup.py test

To documentation is built by tox, but you can manually build via:

$ make docs
...
Doctest summary
===============

(continues on next page)

5.5. Contributing 27

http://github.com/johnpaulett/python-hl7
http://tox.testrun.org/

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

23 tests
0 failures in tests
0 failures in setup code

...

5.5.2 Formatting

python-hl7 has converted to use black <https://black.readthedocs.io/en/stable/> to enforce a coding style. To auto-
matically format using black and isort:

$ make format

It is also recommended to run the flake8 checks for PEP8 and PyFlake violations. Commits should be free of warnings:

$ make lint

5.6 Changelog

5.6.1 0.4.1 - September 2020

• Experimental asyncio-based HL7 MLLP support. MLLP using asyncio, via hl7.mllp.
open_hl7_connection() and hl7.mllp.start_hl7_server()

Thanks Joseph Wortmann!

5.6.2 0.4.0 - September 2020

• Message now ends with trailing carriage return, to be consistent with Message Construction Rules (Section 2.6,
v2.8). [python-hl7#26 <https://github.com/johnpaulett/python-hl7/issues/26>]

• Handle ASCII characters within hl7.Message.escape() under Python 3.

• Don’t escape MSH-2 so that the control characters are retrievable. [python-hl7#27
<https://github.com/johnpaulett/python-hl7/issues/27>]

• Add MSH-9.1.3 to create_ack.

• Dropped support for Python 2.7, 3.3, & 3.4. Python 3.5 - 3.8 now supported.

• Converted code style to use black.

Thanks Lucas Kahlert & Joseph Wortmann!

28 Chapter 5. Contents

https://github.com/joseph-wortmann
https://github.com/f3anaro
https://github.com/joseph-wortmann

python-hl7 Documentation, Release 0.4.1

5.6.3 0.3.5 - June 2020

• Handle ASCII characters within hl7.Message.escape() under Python 3.

Thanks Lucas Kahlert!

5.6.4 0.3.4 - June 2016

• Fix bug under Python 3 when writing to stdout from mllp_send

• Publish as a Python wheel

5.6.5 0.3.3 - June 2015

• Expose a Factory that allows control over the container subclasses created to construct a message

• Split up single module into more manageable submodules.

Thanks Andrew Wason!

5.6.6 0.3.2 - September 2014

• New hl7.parse_datetime() for parsing HL7 DTM into python datetime.datetime.

5.6.7 0.3.1 - August 2014

• Allow HL7 ACK’s to be generated from an existing Message via hl7.Message.create_ack()

5.6.8 0.3.0 - August 2014

Warning: 0.3.0 breaks backwards compatibility by correcting the indexing of the MSH segment and the intro-
ducing improved parsing down to the repetition and sub-component level.

• Changed the numbering of fields in the MSH segment. This breaks older code.

• Parse all the elements of the message (i.e. down to sub-component). The inclusion of repetitions will break
older code.

• Implemented a basic escaping mechanism

• New constant ‘NULL’ which maps to ‘””’

• New hl7.isfile() and hl7.split_file() functions to identify file (FHS/FTS) wrapped messages

• New mechanism to address message parts via a symbolic accessor name

• Message (and Message.segments), Field, Repetition and Component can be accessed using 1-based indices by
using them as a callable.

• Added Python 3 support. Python 2.6, 2.7, and 3.3 are officially supported.

5.6. Changelog 29

https://github.com/f3anaro
https://github.com/rectalogic
https://docs.python.org/3/library/datetime.html#datetime.datetime

python-hl7 Documentation, Release 0.4.1

• hl7.parse() can now decode byte strings, using the encoding parameter. hl7.client.MLLPClient
can now encode unicode input using the encoding parameter. To support Python 3, unicode is now the primary
string type used inside the library. bytestrings are only allowed at the edge of the library now, with hl7.parse
and sending via hl7.client.MLLPClient. Refer to Python 2 vs Python 3 and Unicode vs Byte strings.

• Testing via tox and travis CI added. See Contributing.

A massive thanks to Kevin Gill and Emilien Klein for the initial code submissions to add the improved parsing, and to
Andrew Wason for rebasing the initial pull request and providing assistance in the transition.

5.6.9 0.2.5 - March 2012

• Do not senselessly try to convert to unicode in mllp_send. Allows files to contain other encodings.

5.6.10 0.2.4 - February 2012

• mllp_send --version prints version number

• mllp_send --loose algorithm modified to allow multiple messages per file. The algorithm now splits
messages based upon the presumed start of a message, which must start with MSH|^~\&|

5.6.11 0.2.3 - January 2012

• mllp_send --loose accepts & converts Unix newlines in addition to Windows newlines

5.6.12 0.2.2 - December 2011

• mllp_send now takes the --loose options, which allows sending HL7 messages that may not exactly meet the
standard (Windows newlines separating segments instead of carriage returns).

5.6.13 0.2.1 - August 2011

• Added MLLP client (hl7.client.MLLPClient) and command line tool, mllp_send.

5.6.14 0.2.0 - June 2011

• Converted hl7.segment and hl7.segments into methods on hl7.Message.

• Support dict-syntax for getting Segments from a Message (e.g. message['OBX'])

• Use unicode throughout python-hl7 since the HL7 spec allows non-ASCII characters. It is up to the caller of
hl7.parse() to convert non-ASCII messages into unicode.

• Refactored from single hl7.py file into the hl7 module.

• Added Sphinx documentation. Moved project to github.

30 Chapter 5. Contents

https://github.com/kevingill1966
https://github.com/e2jk
https://github.com/rectalogic
http://python-hl7.readthedocs.org
http://github.com/johnpaulett/python-hl7

python-hl7 Documentation, Release 0.4.1

5.6.15 0.1.1 - June 2009

• Apply Python 3 trove classifier

5.6.16 0.1.0 - March 2009

• Support message-defined separation characters

• Message, Segment, Field classes

5.6.17 0.0.3 - January 2009

• Initial release

5.7 Authors

• John Paulett (john -at- paulett.org)

• Andrew Wason

• Kevin Gill

• Emilien Klein

5.8 License

Copyright (C) 2009-2020 John Paulett (john -at- paulett.org)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

(continues on next page)

5.7. Authors 31

https://github.com/johnpaulett/
https://github.com/rectalogic
https://github.com/kevingill1966
https://github.com/e2jk

python-hl7 Documentation, Release 0.4.1

(continued from previous page)

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

32 Chapter 5. Contents

CHAPTER

SIX

INSTALL

python-hl7 is available on PyPi via pip or easy_install:

pip install -U hl7

For recent versions of Debian and Ubuntu, the python-hl7 package is available:

sudo apt-get install python-hl7

33

http://pypi.python.org/pypi/hl7

python-hl7 Documentation, Release 0.4.1

34 Chapter 6. Install

CHAPTER

SEVEN

LINKS

• Documentation: http://python-hl7.readthedocs.org

• Source Code: http://github.com/johnpaulett/python-hl7

• PyPi: http://pypi.python.org/pypi/hl7

HL7 References:

• Health Level 7 - Wikipedia

• nule.org’s Introduction to HL7

• hl7.org

• OpenMRS’s HL7 documentation

• Transport Specification: MLLP

• HL7v2 Parsing

• HL7 Book

35

http://python-hl7.readthedocs.org
http://github.com/johnpaulett/python-hl7
http://pypi.python.org/pypi/hl7
http://en.wikipedia.org/wiki/HL7
http://nule.org/wp/?page_id=99
http://www.hl7.org/
http://openmrs.org/wiki/HL7
http://www.hl7.org/v3ballot/html/infrastructure/transport/transport-mllp.html
http://wiki.medical-objects.com.au/index.php/Hl7v2_parsing
http://hl7book.net/index.php?title=HL7_version_2

python-hl7 Documentation, Release 0.4.1

36 Chapter 7. Links

INDEX

Symbols
__call__() (hl7.Sequence method), 14
__getitem__() (hl7.Message method), 15
__new__() (hl7.Accessor static method), 14
__setitem__() (hl7.Message method), 15
__str__() (hl7.Container method), 14
_asdict() (hl7.Accessor method), 14
_make() (hl7.Accessor class method), 14
_replace() (hl7.Accessor method), 14

A
Accessor (class in hl7), 14
assign_field() (hl7.Message method), 16

C
close() (hl7.client.MLLPClient method), 19
Component (class in hl7), 18
component_num() (hl7.Accessor property), 14
Container (class in hl7), 14
create_ack() (hl7.Message method), 16
create_component (hl7.Factory attribute), 18
create_component() (hl7.Message method), 16
create_field (hl7.Factory attribute), 18
create_field() (hl7.Message method), 16
create_message (hl7.Factory attribute), 18
create_message() (hl7.Message method), 16
create_repetition (hl7.Factory attribute), 18
create_repetition() (hl7.Message method), 16
create_segment (hl7.Factory attribute), 18
create_segment() (hl7.Message method), 16

E
escape() (hl7.Message method), 16
extract_field() (hl7.Message method), 17

F
Factory (class in hl7), 18
Field (class in hl7), 18
field_num() (hl7.Accessor property), 14

G
generate_message_control_id() (in module

hl7), 13

H
HL7StreamReader (class in hl7.mllp), 20
HL7StreamWriter (class in hl7.mllp), 20

I
InvalidBlockError (class in hl7.mllp), 20
isfile() (in module hl7), 13
ishl7() (in module hl7), 13

K
key() (hl7.Accessor property), 14

M
Message (class in hl7), 15
MLLPClient (class in hl7.client), 19

N
NULL (in module hl7), 13

O
open_hl7_connection() (in module hl7.mllp), 19

P
parse() (in module hl7), 13
parse_datetime() (in module hl7), 14
parse_key() (hl7.Accessor class method), 15

R
readmessage() (hl7.mllp.HL7StreamReader

method), 20
repeat_num() (hl7.Accessor property), 15
Repetition (class in hl7), 18

S
Segment (class in hl7), 18
segment() (hl7.Accessor property), 15
segment() (hl7.Message method), 17

37

python-hl7 Documentation, Release 0.4.1

segment_num() (hl7.Accessor property), 15
segments() (hl7.Message method), 17
send() (hl7.client.MLLPClient method), 19
send_message() (hl7.client.MLLPClient method), 19
Sequence (class in hl7), 14
split_file() (in module hl7), 13
start_hl7_server() (in module hl7.mllp), 19
subcomponent_num() (hl7.Accessor property), 15

U
unescape() (hl7.Message method), 17

W
writemessage() (hl7.mllp.HL7StreamWriter

method), 20

38 Index

	Result Tree
	Usage
	MLLP network client - mllp_send
	Python 2 vs Python 3 and Unicode vs Byte strings
	Contents
	Install
	Links
	Index

